Skip to main content

Text to Image Endpoint

Overview

Stable Diffusion V3 APIs Text2Image API generates an image from a text prompt.

This endpoint generates and returns an image from a text passed in the request body.

Text to image endpoint result

Request

--request POST 'https://stablediffusionapi.com/api/v3/text2img' \

Make a POST request to https://stablediffusionapi.com/api/v3/text2img endpoint and pass the required parameters as a request body.

Watch the how-to video to see it in action.

Body Attributes

ParameterDescription
keyYour API Key used for request authorization.
promptText prompt with description of the things you want in the image to be generated.
negative_promptItems you don't want in the image.
widthMax Height: Width: 1024x1024.
heightMax Height: Width: 1024x1024.
samplesNumber of images to be returned in response. The maximum value is 4.
num_inference_stepsNumber of denoising steps. Available values: 21, 31, 41, 51.
safety_checkerA checker for NSFW images. If such an image is detected, it will be replaced by a blank image.
enhance_promptEnhance prompts for better results; default: yes, options: yes/no.
seedSeed is used to reproduce results, same seed will give you same image in return again. Pass null for a random number.
guidance_scaleScale for classifier-free guidance (minimum: 1; maximum: 20).
multi_lingualAllow multi lingual prompt to generate images. Use "no" for the default English.
panoramaSet this parameter to "yes" to generate a panorama image.
self_attentionIf you want a high quality image, set this parameter to "yes". In this case the image generation will take more time.
upscaleSet this parameter to "yes" if you want to upscale the given image resolution two times (2x). If the requested resolution is 512 x 512 px, the generated image will be 1024 x 1024 px.
embeddings_modelThis is used to pass an embeddings model (embeddings_model_id).
webhookSet an URL to get a POST API call once the image generation is complete.
track_idThis ID is returned in the response to the webhook API call. This will be used to identify the webhook request.

Multi_lingual Supported Languages

If you use a language different from English in you text prompts, pass the "multi_lingual" parameter with "yes" value in the request body. This will trigger an automatic language detection and translation during the processing of your request.

The following languages are supported:

Afrikaans, Arabic, Azerbaijani, Bengali, Burmese, Chinese, Croatian, Czech, Dutch, English, Estonian, Finnish, French, Galician, Georgian, German, Gujarati, Hebrew, Hindi, Indonesian, Italian, Japanese, Kazakh, Khmer, Korean, Latvian, Lithuanian, Macedonian, Malayalam, Marathi, Mongolian, Nepali, Pashto, Persian, Polish, Portuguese, Romanian, Russian, Sinhala, Slovene, Spanish, Swahili, Swedish, Tagalog, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Vietnamese, Xhosa.

Example

Body

Body
{
"key": "",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner))",
"negative_prompt": null,
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "20",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": null,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings_model": null,
"webhook": null,
"track_id": null
}

Request

var myHeaders = new Headers();
myHeaders.append("Content-Type", "application/json");

var raw = JSON.stringify({
"key": "",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner))",
"negative_prompt": null,
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "20",
"seed": null,
"guidance_scale": 7.5,
"safety_checker": "yes",
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings_model": null,
"webhook": null,
"track_id": null
});

var requestOptions = {
method: 'POST',
headers: myHeaders,
body: raw,
redirect: 'follow'
};

fetch("https://stablediffusionapi.com/api/v3/text2img", requestOptions)
.then(response => response.text())
.then(result => console.log(result))
.catch(error => console.log('error', error));

Response

{
"status": "success",
"generationTime": 1.3200268745422363,
"id": 12202888,
"output": [
"https://pub-8b49af329fae499aa563997f5d4068a4.r2.dev/generations/e5cd86d3-7305-47fc-82c1-7d1a3b130fa4-0.png"
],
"meta": {
"H": 512,
"W": 512,
"enable_attention_slicing": "true",
"file_prefix": "e5cd86d3-7305-47fc-82c1-7d1a3b130fa4",
"guidance_scale": 7.5,
"model": "runwayml/stable-diffusion-v1-5",
"n_samples": 1,
"negative_prompt": " ((out of frame)), ((extra fingers)), mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), (((tiling))), ((naked)), ((tile)), ((fleshpile)), ((ugly)), (((abstract))), blurry, ((bad anatomy)), ((bad proportions)), ((extra limbs)), cloned face, glitchy, ((extra breasts)), ((double torso)), ((extra arms)), ((extra hands)), ((mangled fingers)), ((missing breasts)), (missing lips), ((ugly face)), ((fat)), ((extra legs))",
"outdir": "out",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)) DSLR photography, sharp focus, Unreal Engine 5, Octane Render, Redshift, ((cinematic lighting)), f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame",
"revision": "fp16",
"safetychecker": "no",
"seed": 3499575229,
"steps": 20,
"vae": "stabilityai/sd-vae-ft-mse"
}
}